Abstract

The success of autonomous systems will depend upon their ability to safely navigate human-centric environments. This motivates the need for a real-time, probabilistic forecasting algorithm for pedestrians, cyclists, and other agents since these predictions will form a necessary step in assessing the risk of any action. This letter presents a novel approach to probabilistic forecasting for pedestrians based on weighted sums of ordinary differential equations that are learned from historical trajectory information within a fixed scene. The resulting algorithm is embarrassingly parallel and is able to work at real-time speeds using a naive Python implementation. The quality of predicted locations of agents generated by the proposed algorithm is validated on a variety of examples and is considerably higher than existing state of the art approaches over long time horizons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.