Abstract

Laser speckle contrast imaging (LSCI) is a full-field, high spatiotemporal resolution and low-cost optical technique for measuring blood flow, which has been successfully used for neurovascular imaging. However, due to the low signal–noise ratio and the relatively small sizes, segmenting the cerebral vessels in LSCI has always been a technical challenge. Recently, deep learning has shown its advantages in vascular segmentation. Nonetheless, ground truth by manual labeling is usually required for training the network, which makes it difficult to implement in practice. In this manuscript, we proposed a deep learning-based method for real-time cerebral vessel segmentation of LSCI without ground truth labels, which could be further integrated into intraoperative blood vessel imaging system. Synthetic LSCI images were obtained with a synthesis network from LSCI images and public labeled dataset of Digital Retinal Images for Vessel Extraction, which were then used to train the segmentation network. Using matching strategies to reduce the size discrepancy between retinal images and laser speckle contrast images, we could further significantly improve image synthesis and segmentation performance. In the testing LSCI images of rodent cerebral vessels, the proposed method resulted in a dice similarity coefficient of over 75%.

Highlights

  • Laser speckle contrast imaging (LSCI) is based on the scattering properties of moving particles in tissues (Fercher and Briers, 1981)

  • We propose a real-time method for cerebral vessel segmentation in LSCI based on unsupervised domain adaptation without the ground-truth labels in the target modality

  • Using unsupervised domain adaptation and size matching between fundus images and laser speckle contrast images, we achieved good segmentation performance for the test dataset

Read more

Summary

Introduction

Laser speckle contrast imaging (LSCI) is based on the scattering properties of moving particles (e.g., red blood cells) in tissues (Fercher and Briers, 1981). When a coherent light beam illuminates the diffusing surface, the back-scattered lights interfere and superimpose randomly, generating bright and dark speckles (Briers et al, 2013). Full-field and high spatiotemporal flow map could be obtained with spatial laser speckle contrast analysis (s-LASCA) (Briers and Webster, 1996) or temporal laser speckle contrast analysis (t-LASCA) (Cheng et al, 2003). LSCI could provide both functional and structural information of blood vessels, and it has been widely used in both clinical and biomedical researches for its merits of high resolution and low cost. LSCI has mainly been used to quantitatively or qualitatively monitor the blood flow or perfusion change at a selected vessel or region of interest.

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call