Abstract

We describe a digital signal processing method for high precision frequency evaluation of approximately sinusoidal signals based on a computationally efficient method. We demonstrate frequency measurement enabling sensitive measurement of the oscillatory force exerted on a micromechanical cantilever. We apply this technique to detection of the force signal arising in a micromechanically detected magnetic resonance force microscopy electron spin resonance signal. Our frequency detection measurements agree well with the theoretical noise analysis presented here, and we find that due to the excellent sensitivity of optical displacement detection, our sensitivity is limited only by the thermal displacement noise of the cantilever.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.