Abstract

Real-time camera calibration has been intensively studied in augmented reality. However, for texture-less and texture-repeated scenes as well as poorly illuminated scenes, obtaining a stable calibration is still an open problem. In the paper, we propose a method of calibrating a live video by tracking orthogonal vanishing points. Since vanishing points cannot be obtained directly on the image, the tracking is achieved by tracking parallel lines. This is a changeling problem due to the fact that vanishing points are sensitive to image noise, camera movement, and illumination variation. We tackle the challenges by three optimization procedures and flexible process of degenerated cases. During three optimizations, several explicitly geometric constraints are incorporated, ensuring the calibration result robust to poor illumination and camera movement. A variety of challenging examples demonstrate that the proposed algorithm outperforms state-of-the-art methods for texture-less and texture-repeated scenes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.