Abstract

A real-time drift correction and calibration method using spectral correlation based on a revolving in-line gas cell for laser-based spectroscopic trace-gas measurements has been developed and evaluated experimentally. This technique is relatively simple to implement in laser spectroscopy systems and assures long-term stability of trace-gas measurements by minimizing the effects of external sources of drift in real-time. Spectroscopic sensitivity sufficient for environmental monitoring and effective drift suppression has been achieved for long-term measurements of CO₂ with a quantum cascade laser based spectrometer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call