Abstract
This article presents a novel approach to markerless real-time pose recognition in a multicamera setup. Body pose is retrieved using example-based classification based on Haar wavelet-like features to allow for real-time pose recognition. Average Neighborhood Margin Maximization (ANMM) is introduced as a powerful new technique to train Haar-like features. The rotation invariant approach is implemented for both 2D classification based on silhouettes, and 3D classification based on visual hulls.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.