Abstract
The conventional approach of evaluating massive data is inappropriate for real-time analysis; therefore, analysing big data in a data stream remains a critical issue for numerous applications. It is critical in real-time big data analytics to process data at the point where they are arriving at a quick reaction and good decision making, necessitating the development of a novel architecture that allows for real-time processing at high speed and low latency. Processing and anlayzing a data stream in real-time is critical for a variety of applications; however, handling a large amount of data from a variety of sources, such as sensor networks, web traffic, social media, video streams, and other sources, is a considerable difficulty. The main goal of this paper is to give an overview of the current architecture for real time big data analytics, real-time data stream processing methods available, including their system architectures Lambda, kappa, and delta large data stream processing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: European Journal of Information Technologies and Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.