Abstract

We study the optimal bids and allocations in a real-time auction for heterogeneous items subject to the requirement that specified collections of items of given types be acquired within given time constraints. The problem is cast as a continuous time optimization problem that can, under certain weak assumptions, be reduced to a convex optimization problem. Focusing on the standard first and second price auctions, we first show, using convex duality, that the optimal (infinite dimensional) bidding policy can be represented by a single finite vector of so-called ''pseudo-bids''. Using this result we are able to show that the optimal solution in the second price case turns out to be a very simple piecewise constant function of time. This contrasts with the first price case that is more complicated. Despite the fact that the optimal solution for the first price auction is genuinely dynamic, we show that there remains a close connection between the two cases and that, empirically, there is almost no difference between optimal behavior in either setting. This suggests that it is adequate to bid in a first price auction as if it were in fact second price. Finally, we detail methods for implementing our bidding policies in practice with further numerical simulations illustrating the performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.