Abstract

This paper presents a real-time surveillance system for detecting and tracking people, which takes full advantage of local texture patterns, under a stationary monocular camera. A novel center-symmetric scale invariant local ternary pattern feature is put forward to combine with pattern kernel density estimation for building a pixel-level-based background model. The background model is then used to detect moving foreground objects on every newly captured frame. A variant of a fast human detector that utilizes local texture patterns is adopted to look for human objects from the foreground regions, and it is assisted by a head detector, which is proposed to find in advance the candidate locations of human, to reduce computational costs. Each human object is given a unique identity and is represented by a spatio-color-texture object model. The real-time performance of tracking is achieved by a fast mean-shift algorithm coupled with several efficient occlusion-handling techniques. Experiments on challenging video sequences show that the proposed surveillance system can run in real-time and is quite robust in segmenting and tracking people in complex environments that include appearance changes, abrupt motion, occlusions, illumination variations and clutter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call