Abstract

The development of an automated health monitoring framework is critical for aviation system safety, especially considering the expected increase in air traffic over the next decade. Conventional approaches such as model-based and exceedance methods have a low detection accuracy and are limited to specific applications. This paper proposes a robust real-time health monitoring framework for detecting performance anomalies, which may impact system safety during flight operations, with high accuracy and generalized applicability. The proposed monitoring framework utilizes sensor data from commercial flight data recorders to predict possible flight performance anomalies. Decimation, a signal processing technique, in conjunction with Savitzky-Golay filtering is utilized to preprocess the dataset and mitigate sampling rate and noise issues that prevent direct usage of historical flight data. Correlation-based feature subset selection is subsequently performed, and these features are used to train a support vector machine that predicts flight performance. With this model, performance anomalies in the test data are automatically detected based on deviations from the predicted flight behavior. The proposed monitoring framework was demonstrated to detect performance anomalies in real-time and exhibited accurate detection capabilities with high computational efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.