Abstract

Abstract We report a first-principles computational method to describe many-electron dynamics in crystalline solids. The method is based on the time-dependent density functional theory, solving the time-dependent Kohn-Sham equation in real time and real space. The calculation is effciently parallelized by distributing computations of different k-points among processors. To illustrate the usefulness of the method and effciency of the parallel computation, we show calculations of electron dynamics in bulk crystalline Si induced by intense, ultrashort laser pulses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.