Abstract
Lignocellulosic biomass is considered as a sustainable source of energy and chemicals, but its recalcitrance to bioconversion still limits its use. In this paper, a strategy based on two aspects was developed to improve our knowledge on the lignin recalcitrance to enzymatic hydrolysis. First, lignocellulosic films of cellulose nanofibrils (CNFs) with increasing content of lignin (up to 40%) were prepared. Thanks to in situ real time Atomic Force Microscopy (AFM) measurements during the hydrolysis and by comparison with biochemical assays, the use of such films allows to fully assess the importance of the lignin content and of the arrangement between CNFs and lignin on the hydrolysis efficiency. In a second time, contrary to other studies by AFM which only followed a specific structure during enzymatic processes mostly on simple systems (CNFs or cellulose nanocrystals), a quantitative analysis of in-situ time-lapse measurements was developed.Itenablesto accurately address lignocellulosic biomass recalcitrance mechanisms mediated by lignin at nanoscale. Such analysis could pave the way for the use of a quantitative criteria to visualize in situ deconstruction of complex lignocellulosic substrates. Coupling the use of lignocellulosic films and dynamical AFM quantitative analysis to follow the evolution of the structure at nanoscale might lead to an effective targeting of new promising bioconversion strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.