Abstract
Nuclear fusion is a promising alternative to address the problem of sustainable energy production. The tokamak is an approach to fusion based on magnetic plasma confinement, constituting a complex physical system with many control challenges. We study the characteristics and optimization of reservoir computing (RC) for real-time and adaptive prediction of plasma profiles in the DIII-D tokamak. Our experiments demonstrate that RC achieves comparable results to state-of-the-art (deep) convolutional neural networks (CNNs) and long short-term memory (LSTM) models, with a significantly easier and faster training procedure. This efficient approach allows for fast and frequent adaptation of the model to new situations, such as changing plasma conditions or different fusion devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.