Abstract

Human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env)-mediated membrane fusion occurs as a sequence of events that is triggered by CD4 binding to the Env gp120 subunit. In this study, we analyzed the dynamics of Env-mediated membrane fusion at the single-cell level using fluorescent fusion proteins and confocal laser fluorescent microscopy. Either enhanced cyan or yellow fluorescent protein (CFP and YFP, respectively) was fused to the end of the cytoplasmic regions of the HIV-1 receptors (CD4 and CCR5) and Env proteins. Real-time imaging of membrane fusion mediated by these recombinant proteins revealed that the kinetics of fusion in our system was faster than that previously reported. Analysis of the receptor interaction by fluorescence resonance energy transfer (FRET) at the single-cell level demonstrated a tendency for oligomerization of CD4–CD4, but not of CD4–CCR5, in the absence of Env-expressing cells. However, when Env-expressing cells attached to the receptor cells, FRET produced by CD4–CCR5 interaction was increased; the FRET intensity began to decline before the formation of the fusion pore. These changes in FRET may represent the temporal association of these receptors, triggered by gp120 binding, and their dissociation during the formation of the fusion pore. In addition, the FRET analysis of receptor interactions in the presence of fusion inhibitors showed that not only inhibitors acting on CCR5 but also the gp41-derived peptide T-20 interfered with CD4–CCR5 interaction during fusion. These data suggest that T-20 could affect the formation of Env-receptors complexes during the membrane fusion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call