Abstract

Video analysis in real time requires fast and efficient algorithms to extract relevant information from a considerable number, commonly 25, of frames per second. Furthermore, robust algorithms for outdoor visual scenes may retrieve correspondent features along the day where a challenge is to deal with lighting changes. Currently, Local Binary Pattern (LBP) techniques are widely used for extracting features due to their robustness to illumination changes and the low requirements for implementation. We propose to compute an automatic threshold based on the distribution of the intensity residuals resulting from the pairwise comparisons when using LBP techniques. The intensity residuals distribution can be modelled by a Generalized Gaussian Distribution (GGD). In this paper we compute the adaptive threshold using the parameters of the GGD. We present a CUDA implementation of our proposed algorithm. We use the LBPSYM technique. Our approach is tested on videos of four different urban scenes with mobilities captured during day and night. The extracted features can be used in a further step to determine patterns, identify objects or detect background. However, further research must be conducted for blurring correction since the scenes at night are commonly blurred due to artificial lighting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.