Abstract
Characterizing the time over which quantum coherence survives is critical for any implementation of quantum bits, memories, and sensors. The usual method for determining a quantum system’s decoherence rate involves a suite of experiments probing the entire expected range of this parameter, and extracting the resulting estimation in postprocessing. Here we present an adaptive multiparameter Bayesian approach, based on a simple analytical update rule, to estimate the key decoherence timescales (T1, T2∗, and T2) and the corresponding decay exponent of a quantum system in real time, using information gained in preceding experiments. This approach reduces the time required to reach a given uncertainty by a factor up to an order of magnitude, depending on the specific experiment, compared to the standard protocol of curve fitting. A further speedup of a factor approximately 2 can be realized by performing our optimization with respect to sensitivity as opposed to variance. Published by the American Physical Society 2024
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.