Abstract
Targeting the problem of high real-time requirements in astronomical data processing, this paper proposes a real-time early warning model for light curves based on a Gated Recurrent Unit (GRU) network. Using the memory function of the GRU network, a prediction model of the light curve is established, and the model is trained using the collected light curve data, so that the model can predict a star magnitude value for the next moment based on historical star magnitude data. In this paper,we calculate the difference between the model prediction value and the actual observation value and set a threshold. If the difference exceeds the set threshold, the observation value at the next moment is considered to be an abnormal value, and a warning is given. Astronomers can carry out further certification based on the early warning and in combinationwith other means of observation. Themethod proposed in this paper can be applied to real-time observations in time domain astronomy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.