Abstract
The integration of Unmanned Aerial Vehicles (UAVs) is being proposed in a spectrum of applications varying from military to civil. In these applications, UAVs are required to safely navigate in real-time in dynamic and uncertain environments. Uncertainty can be present in both the UAV itself and the environment. Through a literature study, this paper first identifies, quantifies and models different uncertainty sources using bounding shapes. Then, the UAV model, path planner parameters and four scenarios of different complexity are defined. To investigate the effect of uncertainty on path planning performance, uncertainty in obstacle position and orientation and UAV position is varied between 2% and 20% for each uncertainty source first separately and then concurrently. Results show a deterioration in path planning performance with the inclusion of both uncertainty types for all scenarios for both A* and the Rapidly-Exploring Random Tree (RRT) algorithms, especially for RRT. Faster and shorter paths with similar same success rates (>95%) result for the RRT algorithm with respect to the A* algorithm only for simple scenarios. The A* algorithm performs better than the RRT algorithm in complex scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.