Abstract

Digital holographic microscopy (DHM) has the potential to reconstruct the 3D shape of volumetric samples from a single-shot hologram in a label-free and noninvasive manner. However, the holographic reconstruction is significantly compromised by the out-of-focus image resulting from the crosstalk between refocused planes, leading to the low fidelity of the results. In this paper, we propose a crosstalk suppression algorithm-assisted 3D imaging method combined with a home built DHM system to achieve accurate 3D imaging of ocean algae using only a single hologram. As a key step in the algorithm, a hybrid edge detection strategy using gradient-based and deep learning-based methods is proposed to offer accurate boundary information for the downstream processing. With this information, the crosstalk of each refocused plane can be estimated with adjacent refocused planes. Empowered by this method, we demonstrated successful 3D imaging of six kinds of ocean algae that agree well with the ground truth; we further demonstrated that this method could achieve real-time 3D imaging of the quick swimming ocean algae in the water environment. To our knowledge, this is the first time single-shot DHM is reported in 3D imaging of ocean algae, paving the way for on-site monitoring of the ocean algae.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call