Abstract

A digital predistortion waveform shaping scheme combined with a blue filter is proposed to optimize both the rise and fall times of a light-emitting diode (LED) and the optical receiver current of the signal of the real-time visible light communication (VLC) system. The proposed scheme is implemented on a field-programmable gate array (FPGA) and a digital-to-analog converter based test bed, which is flexible and reconfigurable by programming the FPGA to match different LED characteristics and varied data rates. A 262-Mb/s non-return-to-zero on-off keying modulation based real-time VLC link with a bit error rate of less than $1.0\times 10^{-6}$ is achieved over a transmission distance of 5.0 m, which uses a single white phosphorous LED with a limited power of 0.1 W.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.