Abstract

Abstract Structural features of a glassy Cu 60 Zr 30 Ti 10 alloy are studied by using the real-space pair distribution and radial distribution functions. The experimental X-ray diffraction data obtained in a synchrotron beam were used to derive radial distribution function through Fourier transformation processing. Based on these and the results of transmission electron microscopy observation it is suggested that a certain degree of medium-range order in this alloy maintains up to about 2 nm distance. It is also shown that the interatomic distances closely correspond to those of oC68 Cu 10 Zr 7 compound which allows obtaining high relative density of the glassy alloy. The formation of icosahedral local order is also presumed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.