Abstract

The low energy behaviour of the two-dimensional antiferromagnetic Heisenberg model is studied in the sector with total spins S = 0,1,2 by means of a renormalization group procedure, which generates a recursion formula for the interaction matrix ΔS (n+1) of 4 neighbouring “n clusters” of size 2n × 2n, n = 1,2,3,... from the corresponding quantities ΔS (n). Conservation of total spin S is implemented explicitly and plays an important role. It is shown, how the ground state energies ES (n+1), S = 0,1,2 approach each other for increasing n, i.e. system size. The most relevant couplings in the interaction matrices are generated by the transitions 〈S’,m’;n+1|Sq *|S,m;n+1〉 between the ground states |S,m;n+1〉 (m = -S,...,S) on an (n+1)-cluster of size 2n+1 × 2n+1, mediated by the staggered spin operator Sq *.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.