Abstract

Ultrafast scattering using X-rays or electrons is an emerging method to obtain structure dynamics at the atomic length and time scales. However, directly resolving in real-space atomic motions is inherently limited by the finite detector range and the probe energy. As a result, the time-resolved signal interpretation is mostly done in reciprocal space and relies on modeling and simulations of specific structures and processes. Here, we introduce a model-free approach to directly resolve scattering signals in real space, surpassing the diffraction limit, using scattering kernels and signal priors that naturally arise from the measurement constraints. We demonstrate the approach on simulated and experimental data, recover multiple atomic motions at sub-$\angstrom$ngstrom resolutions, and discuss the recovery accuracy and resolution limits vs signal fidelity. The approach offers a robust path to obtain high-resolution real-space information of atomic-scale structure dynamics using current time-resolved X-ray or electron scattering sources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call