Abstract

A two-dimensional antiferromagnetic structure within a pseudomorphic monolayer film of chemically identical manganese atoms on tungsten(110) was observed with atomic resolution by spin-polarized scanning tunneling microscopy at 16 kelvin. A magnetic superstructure changes the translational symmetry of the surface lattice with respect to the chemical unit cell. It is shown, with the aid of first-principles calculations, that as a result of this, spin-polarized tunneling electrons give rise to an image corresponding to the magnetic superstructure and not to the chemical unit cell. These investigations demonstrate a powerful technique for the understanding of complicated magnetic configurations of nanomagnets and thin films engineered from ferromagnetic and antiferromagnetic materials used for magnetoelectronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.