Abstract

Accurate modeling of the electronic structure of warm dense matter is a challenging problem whose solution would allow a better understanding of material properties like equation of state, opacity, and conductivity, with resulting applications from astrophysics to fusion energy research. Here we explore the real-space Green’s function method as a technique for solving the Kohn–Sham density functional theory equations under warm dense matter conditions. We find the method to be tractable and accurate throughout the density and temperature range of interest, in contrast to other approaches. Good agreement on equation of state is found when comparing to other methods, where they are thought to be accurate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call