Abstract
High-angle annular dark-field scanning transmission electron microscopy (HAADF STEM) has been performed along the low-index zone axes of the o-Al4(Cr,Fe) complex metallic alloy to obtain a real-space representation of the crystal structure and to elucidate the material's inherent structural disorder. By comparing experiments with multislice STEM simulations, the model previously suggested by X-ray diffraction is further refined to provide a new set of positions and occupancies for the transition metal atoms. Pmnb is suggested as the new space group for the o-Al4(Cr,Fe) phase. A nonperiodic layer-type modulation, averaged out in bulk diffraction methods, is detected, corroborating the need for complementing bulk diffraction analysis with real-space imaging to derive the true crystal structure of Al4(Cr,Fe).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.