Abstract

Abstract Given a parameterized family of polynomial equations, a fundamental question is to determine upper and lower bounds on the number of real solutions a member of this family can have and, if possible, compute where the bounds are sharp. A computational approach to this problem was developed by Dietmaier in 1998 who used a local linearization procedure to move in the parameter space to change the number of real solutions. He used this approach to show that there exists a Stewart-Gough platform that attains the maximum of forty real assembly modes. Due to the necessary ill-conditioning near the discriminant locus, we propose replacing the local linearization near the discriminant locus with a homotopy-based method derived from the method of gradient descent arising in optimization. This new hybrid approach is then used to develop a new result in real enumerative geometry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.