Abstract

A scalar field nonminimally coupled to gravity is studied in the canonical framework, using self-dual variables. The corresponding constraints are first class and polynomial. To identify the real sector of the theory, reality conditions are implemented as second class constraints, leading to three real configurational degrees of freedom per space point. Nevertheless, this realization makes nonpolynomial some of the constraints. The original complex symplectic structure reduces to the expected real one, by using the appropriate Dirac brackets. For the sake of preserving the simplicity of the constraints, an alternative method preventing the use of Dirac brackets, is discussed. It consists of converting all second class constraints into first class by adding extra variables. This strategy is implemented for the pure gravity case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.