Abstract
Polynomial optimization appears various areas of mathematics. Although it is a fully nonlinear nonconvex optimization problems, there are numerical algorithms to approximate the global optimal value by generating sequences of semidefinite programming relaxations. In this paper, we study how real radicals of ideals have roles in duality theory and finite convergence property. Especially, duality theory is considered in the case that the truncated quadratic module is not necessarily closed. We will also try to explain the results by giving concrete examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.