Abstract

Since the 2020 release of 10fb-1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$10 \\hbox { fb}^{-1}$$\\end{document} of integrated luminosity of proton–proton collision data to the public by the ATLAS experiment, significant potential for its use for youth engagement in physics and citizen science has been present. In particular, this article aims to address whether, if provided adequate training and resources, high school students are capable of leveraging the ATLAS Open Data to semi-autonomously develop their own original research projects. To this end, a repository of interactive Python Jupyter notebook training materials was developed, incrementally increasing in difficulty; in the initial instalments no prior knowledge of particle physics or Python coding is assumed, while in the latter stages students emulate the steps of a real Higgs boson search using ATLAS data. This programme was implemented in secondary schools throughout the UK during the 2022/23 academic year and is presented in this article through a collection of research projects developed by a selection of participating students.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.