Abstract

The objective of the research outlined in this paper was to develop the analytical approximations for calculating real-gas properties (p-v-T data, thermodynamic functions: internal energy, enthalpy, and entropy, and specific heats) of vapor-phase n-alkanes from C1 (methane) to C14 (normal tetradecane), O2, N2, H2O, CO, CO2, and H2 within the range of pressure 0.05 MPa ≤ p ≤ 20 MPa and temperature 280 K ≤ T ≤ 3000 K aimed for implementation into computational fluid dynamics (CFD)-codes simulating the operation process in modern Diesel engines. The analytical approximations have been developed based on available literature data and on the new equation of state for moderately dense gases. The approximations reported are rather simple and therefore can be used directly in CFD codes. Approximations for mixing rules are also provided.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call