Abstract

We systematically investigated GaAs/polymer hybrid solar cells in a simple planar junction, aiming to fundamentally understand the function of semiconducting polymers in GaAs/polymer-based heterojunction solar cells. A library of semiconducting polymers with different band gaps and energy levels were evaluated in GaAs/polymer planar heterojunctions. The optimized thickness of the active polymer layer was discovered to be ultrathin (~10 nm). Further, the open-circuit voltage (Voc) of such GaAs/polymer planar heterojunctions was fixed around 0.6 V, regardless of the HOMO energy level of the polymer employed. On the basis of this evidence and others, we conclude that n-type GaAs/polymer planar heterojunctions are not type II heterojunctions as originally assumed. Instead, n-type GaAs forms a Schottky barrier with its corresponding anode, while the semiconducting polymer of appropriate energy levels can function as hole transport layer and/or electron blocking layer. Additionally, we discover that both GaAs surface passivation and thermal annealing can improve the performance of GaAs/polymer hybrid solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.