Abstract
Real estate platforms provide a new source of data which has already been used as a substitute for transaction data in hedonic regression applications. This paper asks whether it is valid to do so in the established research areas of (1) willingness to pay estimation, (2) automated valuations, and (3) price index construction. It therefore compares listings and transaction data and regression results derived from them. We find that ask prices stochastically dominate sale prices, mainly because the composition of characteristics differs between the two data sets. But estimates of implicit prices also differ. As a result, willingness to pay estimates from listings data can be widely off when compared with estimates from transaction data. Listings data are not very useful to predict market values of individual houses either, as these predictions suffer from upward bias and large error variance. We find, however, that an ask price index complements a sale price index, as it is useful for nowcasting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.