Abstract

Cold chain logistics (CCL) scheduling is important for smart cities as it directly affects the service quality and operating profits of logistics companies. However, traditional CCL models seldom reflect the real transportation environment, making the solutions hardly applicable to the real CCL scenes. Hence, this paper attempts to establish a multisource data-associated CCL model oriented to the real transportation environment. This environment is considered by employing the real-captured driving duration and distance between any two places. Three scheduling objectives (namely, quality losses, personnel and vehicle costs, and transportation costs) are taken into account. To efficiently solve the proposed multisource data-associated multiobjective CCL model, a multiple population-based multiobjective ant colony system (MPMOACS) approach is proposed. Based on the multiple populations for multiple objectives framework, the MPMOACS approach can optimize multiple objectives sufficiently, and thus obtain promising solutions distributed along the entire Pareto front. To further enhance the performance of the MPMOACS, a ranking-based local search strategy is also designed. Experiments are conducted on not only the existing benchmark instances but also a real environment-aware multisource dataset that is built based on real-captured transportation data of Guangzhou and Shenzhen, China. Compared with six state-of-the-art and very recent well-performing multiobjective optimization approaches, the proposed MPMOACS approach exhibits the overall best performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.