Abstract

We prove that if f is a real entire function of infinite order, then ff’’ has infinitely many non-real zeros. In conjunction with the result of Sheil-Small for functions of finite order this implies that if f is a real entire function such that ff’’ has only real zeros, then f is in the Laguerre-Polya class, the closure of the set of real polynomials with real zeros. This result completes a long line of development originating from a conjecture of Wiman of 1911.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.