Abstract

This work is focused on the simulation of a complete hybrid bus vehicle model performing a real-world driving cycle. The simulation framework consists of a coupled co-simulation environment, where all the vehicle sub-system models are linked to achieve a real time exchange of input and output signals. In the vehicle model also the electric devices of the powertrain and accumulation system are included. This co-simulation platform is applied to investigate the hybridization of a 12-m city bus, performing a typical urban driving mission. A comparison between the conventional powertrain is performed against the hybridized version, to highlight the advantages and challenges. In particular, the novelty of this modeling approach is that the IC engine simulation does not rely on pre-processed look-up tables, but exploits a high-fidelity one-dimensional thermo-fluid dynamic model. However, it was necessary to develop a fast simulation methodology to exploit this predictive tool, achieving a low computational cost. The 1D engine model is first validated against the experimental engine map data available, showing a good model predictivity. Then the 1D engine model and the other models of the powertrain are coupled to the vehicle model, in order to follow the prescribed velocity profile of the driving cycle. The complete model is applied under different conditions, to evaluate the impact on performance and emissions and assess the simulation predictivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.