Abstract

The moduli space of stable real cubic surfaces is the quotient of real hyperbolic four-space by a discrete, nonarithmetic group. The volume of the moduli space is 37 π 2/1080 in the metric of constant curvature −1. Each of the five connected components of the moduli space can be described as the quotient of real hyperbolic four-space by a specific arithmetic group. We compute the volumes of these components. To cite this article: D. Allcock et al., C. R. Acad. Sci. Paris, Ser. I 337 (2003).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.