Abstract

In the present work we calculate the theoretical tunneling conductance curves of SIN junctions involving high-T c superconductors, for different possible symmetries of the order parameter (s, d, s + i d, s + d, anisotropics and extendeds). To do so, we solve the real-axis Eliashberg equations in the case of an half-filled infinite band. We show that some of the peculiar characteristics of HTSC tunneling curves (dip and hump at eV > Δ, broadening of the gap peak, zero bias and so on) can be explained in the framework of the Migdal-Eliashberg theory. The theoretical d I/ d V curves calculated for the different symmetries at T=4 K are then compared to various experimental tunneling data obtained in optimally-doped BSCCO, TBCO, HBCO, LSCO and YBCO single crystals. To best fit the experimental data, the scattering by non-magnetic impurities has to be taken into account, thus limiting the sensitivity of this procedure in determining the exact gap symmetry of these materials. Finally, the effect of the temperature on the theoretical tunneling conductance is also discussed and the curves obtained at T = 2 K are compared to those given by the analytical continuation of the imaginary-axis solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.