Abstract
Recent progress on root-finding for polynomial and secular equations largely relied on eigen-solving for the associated companion and diagonal plus rank-one generalized companion matrices. By applying to them Rayleigh quotient iteration, we could have already competed with the current best polynomial root-finders, but we achieve further speedup by applying additive preprocessing. Moreover our novel rational maps of the input matrix enables us to direct the iteration to approximating only real roots, so that we dramatically accelerate their numerical computation in the important case where they are much less numerous than all complex roots.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.