Abstract
This study fabricated a portable, high-performance, and reagentless electrochemical devices using CO2 laser-scribing process, which allowed localized carbonization of a non-conductive and low-cost polymer platform, i.e., phenolic-paper. The carbonized material was extensively characterized by Raman spectroscopy, XPS, XRD, SEM, and electrochemical impedance spectroscopy. The carbon-based electrodes were obtained from the photothermal process induced by CO2 laser radiation and subsequently subjected to electrochemical treatment to fabricate a functional material with excellent conductivity and low charge-transfer resistance. Additionally, the laser-scribed electrodes presented a porous structure with graphene-like domains, thus indicating both potential for on-site electroanalytical applications and better performance than conventional carbon electrodes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.