Abstract

For black-hole binaries whose spins are (anti-) aligned with respect to the orbital angular momentum of the binary, we compute the frequency domain phasing coefficients including the quadratic-in-spin terms up to the third post-Newtonian (3PN) order, the cubic-in-spin terms at the leading order, 3.5PN, and the spin-orbit effects up to the 4PN order. In addition, we obtain the 2PN spin contributions to the amplitude of the frequency-domain gravitational waveforms for non-precessing binaries, using recently derived expressions for the time-domain polarization amplitudes of binaries with generic spins, complete at that accuracy level. These two results are updates to Arun et al. (2009) [1] for amplitude and Wade et al. (2013) [2] for phasing. They should be useful to construct banks of templates that model accurately non-precessing inspiraling binaries, for parameter estimation studies, and or constructing analytical template families that accounts for the inspiral-merger-ringdown phases of the binary.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call