Abstract

BackgroundAmikacin (AMI) and vancomycin (VAN) are antibiotics largely used in intensive care in the empiric treatment of severe infections by multi-resistant gram-negative and gram-positive bacteria. AMI and VAN are eliminated untransformed by glomerular filtration, showing depuration ratio highly correlated with creatinine (CRE) clearance. AMI, VAN and CRE are highly polar structures, presenting poor retention in reversed-phase liquid chromatography when using conventional stationary phases. ObjectiveThis study aimed to develop and validate a simple UPLC-MS/MS method for simultaneous determination of AMI, VAN, and CRE in human plasma for therapeutic drug monitoring. ResultsSamples were prepared by protein precipitation, followed by dilution. Heptafluorobutyric acid (HFBA) was added to the mobile phase at low concentration (0.01%), and separation was performed in an ultra-performance reversed-phase column (particle diameter of 1.8 μm). These conditions allowed retention times of 0.92, 0.93, 2.12, 2.17 and 2.27 min for CRE, CRE-D3, AMI, KAN and VAN, respectively. The assay was linear from 0.5 to 100 mg L−1 for AMI and VAN and 5 to 100 mg L−1. Precision, accuracy and stability assays were acceptable according to bioanalytical validation guidelines. Suitable results. Matrix effects were in the range of +10.5 to +11.6% for AMI, −4.3 to −4.5% for VAN, and − 1.7 to +0.7 for CRE. ConclusionThe first assay for the simultaneous determination of AMI, VAN and CRE in plasma by liquid chromatography-tandem mass spectrometry was reported. This assay allows the obtention of the necessary analytical data for the clinical application of population pharmacokinetic methods for therapeutic drug monitoring of AMI and VAN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.