Abstract

We describe the synthesis of the full set of the so far unknown methyl altrobiosides and the initial analysis of the conformational dynamic which occurs in some of the synthesized compounds. d-Altrose chemistry has largely been neglected as it is a rare sugar and has first to be synthesized from glucose or mannose, respectively. Nevertheless, d-altrose is particularly interesting as the energy barrier between the complementary chair conformations is rather low and therefore dynamic mixtures of conformers might occur. We describe the ready synthesis of the selectively protected altrosyl acceptors for the glycosidation from d-mannose and the altrosyl-trichloroacetimidate as useful glycosyl donor to achieve the (1 → 2), (1 → 3), (1 → 4), and (1 → 6)-α-linked altrobiosides. The diastereomeric α- and β-O-(d-altropyranosyl)-trichloroacetimidates adopt different ring conformations as analyzed by NMR and VCD spectroscopy. Also, the pyranose ring conformations of the obtained altrobiosides apparently differ from a regular 4C1 chair according to NMR analysis and are influenced by the regiochemistry of the interglycosidic linkage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.