Abstract

The cholinergic control over inflammatory reactions calls for deciphering the corresponding protein partners. An example is blood–nerve barrier disruption allowing penetration of inflammatory factors, which is notably involved in various neuropathies due to yet unknown molecular mechanism(s). In rats, lipopolysaccharide (LPS) administration followed by intra-neural (i.n.) saline injection inducing a focal blood–nerve disruption leads to systemic inflammatory reaction accompanied by transient conduction impairment in the sciatic nerve. Here, we provide evidence compatible with the hypothesis that ARP, the naturally cleavable C-terminal peptide of the stress-induced “readthrough” acetylcholinesterase variant (AChE-R), is causally involved in the emergence of this LPS-induced conduction impairment. Intra-neural injection to naïve rats of conditioned medium from cultured splenocytes exposed to LPS in vitro (reactive splenocyte medium) induced a transient conduction impairment that was accompanied by facilitated accumulation of cleaved intra-neural ARP. Protein kinase C (PKC) βII, known to interact with ARP, was significantly elevated in the LPS-exposed sciatic nerve preparations. Moreover, direct i.n. injection of synthetic ARP30, bearing the mouse AChE-R C-terminal sequence, similarly induced PKCβII expression and conduction impairment. The induction of neural conduction impairment by ARP, possibly through its interaction with PKCβII, suggests a role for AChE-R expression in inflammation-associated neuropathies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call