Abstract

Readout electronics is developed for a prototype time-of-flight (TOF) ion composition spectrometer for in situ measurement of the mass/charge distributions of major ion species from 200 to 100 keV/e in space plasma. By utilizing a constant fraction discriminator (CFD) and time-to-digital converter (TDC), challenging dynamic range measurements were performed with high time resolution and event rates. CFD was employed to discriminate the TOF signals from the micro-channel plate and channel electron multipliers. TDC based on the combination of counter and OR-gate delay chain was designed in a high-reliability flash field programmable gate array. Owing to the non-uniformity of the delay chain, a correction algorithm based on integral nonlinearity compensation was implemented to reduce the time uncertainty. The test results showed that the electronics achieved a low timing error of < 200 ps in the input range from 35 to 500 mV for the CFD, and a time resolution of ~ 550 ps with time uncertainty < 180 ps after correction and a time range of 6.4 μs for the TDC. The TOF spectrum from an electron beam experiment of the impacting N2 gas further indicated the good performance of this readout electronic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call