Abstract
A multi-element silicon photomultiplier (SiPM) based time-of-flight (ToF) detector module for positron emission tomography (PET) has been developed. The detector module is based on a 4 × 4 array of LYSO-SiPM elements (Hamamatsu MPPC S10931-050P), with individual bias supply for each element. Each element is read out by a wideband, low-noise RF amplifier to maximize timing performance. All 16 outputs are digitized with a high-speed CAEN V1742 digitizer module (32 + 2 channels, 5 GS/s sampling, 12-bit amplitude resolution, 500 MHz input bandwidth) to acquire raw pulse waveforms for offline timing and energy extraction. As the digitizer has no internal trigger for individual channels, a trigger board has been developed which produces a fast pulse that triggers the digitizer whenever any pixel of the detector detects a signal in coincidence with a reference detector. To assess the performance of the prototype module, a 4 × 4 LYSO scintillator array ( 3×3×5 mm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sup> elements) was coupled to the SiPM photodetectors and energy/timing resolution measurements were performed using a Ge-68 source. At 1.4 V overvoltage, the energy resolution, not corrected for saturation effects of the SiPM, varied from a minimum of 10.1% to a maximum of 13.3% with an average energy resolution of 11.4 ± 0.8% across the 16 channels. With a reference detector (single 3×3×5 mm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sup> LYSO crystal coupled to a Hamamatsu MPPC S10362-33), the average coincidence resolving time (CRT) across the detector module was 206 ± 7 ps FWHM at 2.4 V overvoltage-the best reported for a PET block (array) detector based on conventional photodetectors to date.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.