Abstract

Mal de Debarquement syndrome (MdDS) is composed of constant phantom sensations of motion, which are frequently accompanied by increased sensitivity to light, inability to walk on a patterned floor, the sensation of ear fullness, head pressure, anxiety, and depression. This disabling condition generally occurs in premenopausal women within 2 days after prolonged passive motion (e.g., travel on a cruise ship, plane, or in a car). It has been previously hypothesized that MdDS is the result of maladaptive changes in the polysynaptic vestibulo-ocular reflex (VOR) pathway called velocity storage. Past research indicates that full-field optokinetic stimulation is an optimal way to activate velocity storage. Unfortunately, such devices are typically bulky and not commonly available. We questioned whether virtual reality (VR) goggles with a restricted visual field could effectively simulate a laboratory environment for MdDS treatment. A stripes program for optokinetic stimulation was implemented using Google Daydream Viewer. Five female patients (42 ± 10 years; range 26–50), whose average MdDS symptom duration was 2 months, participated in this study. Four patients had symptoms triggered by prolonged passive motion, and in one, symptoms spontaneously occurred. Symptom severity was self-scored by patients on a scale of 0–10, where 0 is no symptoms at all and 10 is the strongest symptoms that the patient could imagine. Static posturography was obtained to determine objective changes in body motion. The treatment was considered effective if the patient's subjective score improved by at least 50%. All five patients reported immediate improvement. On 2-month follow-ups, symptoms returned only in one patient. These data provide proof of concept for the limited-visual-field goggles potentially having clinical utility as a substitute for full-field optokinetic stimulation in treating patients with MdDS in clinics or via telemedicine.

Highlights

  • Mal de Debarquement syndrome (MdDS) is a debilitating phantom sensation of motion that generally occurs within 48 h after prolonged transportation or with no specific motion preceding it [1]

  • While the interpretation of the findings must be taken in the context of this not being a clinical trial, these data do suggest that further examination of a vestibulo-ocular reflex (VOR) readaptation protocol using virtual reality (VR) goggles with a restricted visual field is warranted

  • Limited-field optokinetic nystagmus (OKN) stimulation may be an effective stimulus for the activation of the velocity storage to the extent that it could be used for MdDS treatment

Read more

Summary

Introduction

Mal de Debarquement syndrome (MdDS) is a debilitating phantom sensation of motion that generally occurs within 48 h after prolonged transportation (motion triggered, MT) or with no specific motion preceding it (spontaneously occurred, SO) [1]. When the head is rotated at a constant velocity, primary vestibular afferents sense this rotation for ≈4 s from the rotation onset [3,4,5]. Information about head velocity must be stored in the brain to produce such an extended eye response. Despite minor differences in the two proposed models, both suggested that velocity information is temporarily stored in the brain. Because nystagmus dies away within 12–20 s, the integrator was modeled with a leak of stored velocity signal. Both models assumed that the vestibulo-ocular reflex (VOR) is composed of 3-neuronal (direct) VOR pathway that is more or less independent of the polysynaptic velocity storage (indirect) pathway

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call