Abstract

Security analytics and forensics applied to in-vehicle networks are growing research areas that gained relevance after recent reports of cyber-attacks against unmodified licensed vehicles. However, the application of security analytics algorithms and tools to the automotive domain is hindered by the lack of public specifications about proprietary data exchanged over in-vehicle networks. Since the controller area network (CAN) bus is the de-facto standard for the interconnection of automotive electronic control units, the lack of public specifications for CAN messages is a key issue. This paper strives to solve this problem by proposing READ: a novel algorithm for the automatic Reverse Engineering of Automotive Data frames. READ has been designed to analyze traffic traces containing unknown CAN bus messages in order to automatically identify and label different types of signals encoded in the payload of their data frames. Experimental results based on CAN traffic gathered from a licensed unmodified vehicle and validated against its complete formal specifications demonstrate that the proposed algorithm can extract and classify more than twice the signals with respect to the previous related work. Moreover, the execution time of signal extraction and classification is reduced by two orders of magnitude. Applications of READ to CAN messages generated by real vehicles demonstrate its usefulness in the analysis of CAN traffic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.