Abstract

Underground Coal Gasification (UCG) is the process of in-situ conversion of coal into combustible products (syngas) which can be used either as fuel or as a chemical feedstock. In this study, the gasification channel is viewed as a one-dimensional packed bed reactor. The packed bed reactor model is solved incorporating chemical reactions and mass transfer effects. A pseudo-transient model is simulated for temperature and composition profiles of the gas and solid phases. The movements of the pyrolysis and the reaction front are obtained. The model results are in qualitative agreement with literature. The effects of various operating parameters are studied in detail. Steam/O2 ratio, inlet O2 and total pressure determine the solid temperature profile and hence the outlet gas composition. The simulations are performed for two sets of kinetics parameters. The solid temperature profile and outlet gas compositions change significantly with a change in kinetics parameters. The main motivation behind this study is to provide a theoretical base for understanding the critical aspects of UCG and to provide a tool which coupled with experiments will help in determining the commercial feasibility of the UCG process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call