Abstract
To optimize the operation and know the relationships between operation and potential capability of UASB-anammox mixed culture process, reactor kinetic models were conducted and the potential nitrogen conversion rates were estimated. Total nitrogen (TN), NH4+-N and NO2−-N removal efficiency were simulated and predicted by modified Stovere-Kincannon model, Monod model, First-order model and Grau second-order substrate removal models. The nitrogen gas production rate was also evaluated by Van der meer and heertjes model. During the process, the nitrogen loading rate (NLR) was increased from 0.93 to 7.34 g L−1 d−1 following the substrate increased from 280 to 462 mg N L−1 and hydraulic residence times (HRT) decreased from 24 h to 1.5 h, the highest achieved removal efficiency of NH4+–N, NO2−–N and TN were 99, 95 and 90%, respectively. Simulation results proved that the Modified Stover-Kincannon model and the Grau second-order model were the most appropriate models with prospected maximum TN removal rate Umax and saturation value constant KB were 3.33 and 4.03 g N L−1 d−1, respectively. Validation of the linearity between the experimental data and predicted values of kinetics illustrated the two models appropriately described the kinetic behavior of UASB-anammox mixed culture. The reactor kinetic evaluation proved valuable information for guiding or optimizing the operation condition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Biodeterioration & Biodegradation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.